Towards the Distributed Logic Programming
of Intelligent Visual Surveillance Applications

1,2(B) 1

Alexei A. Morozov , Olga S. Sushkova', and Alexander F. Polupanov

! Kotel’nikov Institute of Radio Engineering and Electronics of RAS,
Mokhovaya 11-7, Moscow 125009, Russia
morozov@cplire.ru, {o.sushkova,sashap55}@mail.ru
2 Moscow State University of Psychology and Education,
Sretenka 29, Moscow 107045, Russia
http://www.fullvision.ru/actor

Abstract. An extension of the Actor Prolog language with the ability of
distributed logic programming is demonstrated. This language extension
is developed for experimenting with distributed logic programming and
declarative agent approach to intelligent visual surveillance. An approach
to resolving the contradiction between the strong typing of Actor Prolog
and the independence of software agents is proposed. Remote calls of
Actor Prolog predicates are implemented using the object-oriented fea-
tures of Actor Prolog, translation of Actor Prolog to Java, and the Java
RMI protocol. An example of logic program communication based on
the remote predicate calls is examined.

1 Introduction

A distributed version of the Actor Prolog language [1,2] described in this paper is
intended for experimenting with the declarative agent approach to the intelligent
visual surveillance. The concept of the multi-agent programming came to the
field of intelligent visual surveillance from Artificial Intelligence [3-8]. The idea
of the multi-agent approach to the visual surveillance is in that the intelligent
visual surveillance system consists of communicating programs (agents) that
have the following properties: autonomy (they operate without direct control
from users and other agents), social ability (they can co-operate to solve the
problem), reactivity (they perceive the environment and respond to external
events), and pro-activity (they demonstrate a goal-directed behavior). Theore-
tically speaking, the multi-agent approach can provide flexibility, reliability, and
openness of the intelligent visual surveillance systems [9,10]. For instance, let us
imagine that stages of video analysis are implemented by a set of agents. Then,
the visual surveillance system can be easily extended by an additional method
of abnormal behavior recognition without modification of its agents and even
without suspending its work. One just needs to insert in the system a new agent
that can utilize results of other agents and transfer his own results to others.

@© Springer International Publishing AG 2017
O. Pichardo-Lagunas and S. Miranda-Jiménez (Eds.): MICAI 2016, Part II, LNAI 10062, pp. 42-53, 2017.
DOI: 10.1007/978-3-319-62428-0_4



Towards the Distributed Logic Programming 43

In recent decade, the declarative approach to the development of the multi-
agent systems is recognized as a basic idea in this research area; a set of excel-
lent declarative multi-agent platforms and languages are developed and imple-
mented [5,7]. Unfortunately, in the framework of the intelligent visual surveil-
lance systems, the agents are to perform very specific operations on big arrays of
binary data that are out of the framework of the conventional symbolic process-
ing operations typical for declarative languages. Thus, there is a reason for deve-
lopment of the new means of the multi-agent-programming for experimenting
with intelligent visual surveillance systems. The distinctive feature of our app-
roach is in that we implement the intelligent video analysis using the concurrent
object-oriented language Actor Prolog and a compiler of Actor Prolog into pure
Java [11].

Previously, the object-oriented logic approach to the intelligent visual sur-
veillance was reported in [12-16]. It was demonstrated that the translation of
the object-oriented logic language into Java yields a sufficiently fast executable
code for real time video analysis and detection of complex patterns of the abnor-
mal people behavior. This approach can be extended to the distributed visual
surveillance, because the Actor Prolog language is indeed an object-oriented
language and can be easily adapted to the distributed programming framework
even without modifications of the syntax. The only problem to be solved is the
incorporation into the language the ability of remote procedure calls.

The Actor Prolog language differs from other state-of-the-art Prolog-based
agent languages like Jason [17] and 2APL [18] in that it is not based on the
BDI model and it does not directly offer high-level features such as planners
and agent communication languages that might be expected for a multi-agent
language. Actor Prolog is rather a more high-performance object-oriented logic
language that is a base for implementation of real time multi-agent application
platforms.

The paper is organized as follows. The problem of the contradiction between
the strong typing of the Actor Prolog language and the independence of the
software agents is discussed in Sect. 2. The type system of the distributed Actor
Prolog is considered in Sect. 3. An example of the remote communication between
two independent Actor Prolog programs is examined in Sect. 4.

2 The Problem of the Strong Typing in Multi-agent
Systems

A term “remote procedure call” is usually associated with the OMG GORBA,
Java RMI, or MS DCOM protocols. This meaning of the term is relevant to
the topic, because the remote predicate calls are implemented in the distributed
Actor Prolog using the Java RMI protocol. At the same time, the term is linked
with the general problems of the logic language design and implementation in
the context of the agent logic programming.

It is known that interactions between independent agents are very hard to
handle for strongly typed object systems [19]. The main problem to be resolved



44 A.A. Morozov et al.

in the course of adapting Actor Prolog to multi-agent paradigm is the contra-
diction between the strong type system of the language and the idea of indepen-
dency of the software agents. The strong type system is an important feature
of the language and is necessary for generation of fast and reliable executable
code [11,13]. The problem is in that one needs to transfer information about
the data types between the software units to implement their link and static
type-checking. This kind of information exchange between the software agents
is definitely undesirable, because it decreases the autonomy of the agents and
complicates the agent life cycle. In this paper, another solution of the problem
is proposed; the type system of the Actor Prolog language is partially softened
to allow a dynamic type-checking (instead of the static one) in some restricted
cases linked with the inter-agent communications.

Another problem that is close to the topic, but is still different, is a com-
bination of the object-oriented paradigm and the strong typing. It was recog-
nized earlier, that types are useful for formalizing and maintaining object inter-
faces, though types are orthogonal to objects and their integration is not a
simple deed [20]. The Actor Prolog language supports both types (domains) and
classes/objects. A distinctive feature of the language is in that the “object” and
“data item” notions were clearly separated in the language [1]. The language
has the strong type system that supports various kinds of simple and composite
data items like numbers, structures, lists, etc. At the same time, Actor Pro-
log supports also classes based on the “clauses view” of logic OOP [21]. The
instances of classes (so-called “worlds”) can be processed like standard Prolog
terms; they can be passed as arguments to predicates and can be included in
composite terms. However, special rules are used for unification of variables con-
taining instances of classes and special means are to be developed for interchange
of these kinds of terms between the distributed agents.

In the Actor Prolog language, different instances of classes are treated always
as different entities, that is, unification of two worlds succeeds if and only if these
worlds are the same instance of a class. The interface of the class contains all nec-
essary information about its methods including names, arity, flow patterns, and
types of arguments. The information about the determinancy/non-determinancy
of the methods is also included in the interface. There are three keywords in
the languages for the declaration of the determinancy of the methods: determ,
nondeterm, and imperative. The nondeterm keyword informs compiler that
there are no restrictions on the behavior of methods and they can produce sev-
eral answers in the case of backtracking and/or terminate with failure. The
determ keyword means that methods can produce just one answer or terminate
with failure. The imperative keyword imposes the hardest restrictions on the
methods: the predicates must succeed and produce one answer; this means that
the predicate operates indeed as a usual procedure in an imperative language.
All these restrictions are checked by the compiler during the translation of the
program.

The description and usage of the class interfaces are complicated a bit in
Actor Prolog by the fact that the language supports concurrent processes and



Towards the Distributed Logic Programming 45

two different kinds of method invocations: plain and asynchronous. The processes
are a special kind of class instances; they are defined using double round brackets
in the class instance constructors [2]. The plain method invocation is a usual
predicate call of standard Prolog; the predicate can be invoked in a given world
using the “?” prefix. The asynchronous method invocations are indicated by
special prefixes “<-" and “<<”. Only this kind of predicate calls is applicable for
the processes; an attempt to implement a plain predicate call in a concurrent
process will always terminate with a failure. The internal keyword is introduced
in the language to facilitate optimization of the logic programs. This keyword
informs the compiler that a given attribute of a class always contains a plain
class instance, but not a process, that is important for analysis of predicate
determinancy. Obviously, we will focus on the asynchronous method invocations
in this paper, because class instances obtained from another logic program are
processes that operate concurrently in relation to the invoking logic program.

Ordinarily, a standard static type-checking is implemented in the distributed
version of Actor Prolog. The dynamic type-checking is implemented only if a
method is to be called in an object (an instance of Actor Prolog class) that
is originated from another logic program and is transferred somehow to the
logic program under consideration. The verification of the remote predicate call
includes the following operations:

1. One checks the name and the arity of the predicate. The predicate with the
target name and arity is to be found in the object.

2. One checks the flow pattern of the predicate. The Actor Prolog language
supports explicit declaration whether the argument is input or output; the
flow directions of all the arguments in the predicate call are checked.

3. One checks so-called structural match of domains of all the arguments (this
is a kind of dynamic type-checking).

The structural match of the domains means that graphs representing the
data structures belonging to domains have to be equivalent, but not the names
of the domains.

3 A Strong Type System in the Distributed Actor Prolog

Let us consider briefly the type system of the Actor Prolog language and the
structural matching rules associated with various kinds of simple and compound
data types (domains).

Actor Prolog supports the following simple data types: integer, real, symbol,
and string. The difference between the integers and real numbers is in that the
real numbers contain a dot. The difference between the symbols and strings is
in that the symbols are represented by integer codes internally, but not by the
text, during the execution of the program. On the syntax level, the symbols
are enclosed in apostrophes and the strings are enclosed in quotes. Here is an
example of using these built-in data types for definition of user data types:



46 A.A. Morozov et al.

DOMAINS:

Year = INTEGER.
Height = REAL.
Color = SYMBOL.
Message = STRING.

During the structural matching, the integers can match only the integers, the
reals can match only the reals, etc. No automatic type conversions are allowed.

Actor Prolog supports so-called numerical ranges and enumerations. A range
type can be defined using the integer or real bounds, for example:

Hour = [0 .. 24].
Angle = [0.0 .. 360.0].

The procedure of structural matching checks the exact equality of the bounds
of the numerical range types to be compared. The only exception is that the real
range bounds can slightly differ in accordance with the real number precision
given in the translator options.

An enumeration type can be defined using a set of constants of any simple
types, for instance:

Hour =0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12.
Color ‘Red’; ‘Blue’; ‘Green’ .

The structural match of two enumerations means that these types include
the same sets of elements.

Note that a type definition can include a set of names of other types in
the language; this is a basic difference of the Actor Prolog type system from
analogous type systems in the Turbo/PDC Prolog family [22]. For instance, an
argument of the following data type can transmit both integer and real values:

Numerical = INTEGER; REAL.

Generally speaking, a type definition can refer to other data types. The struc-
ture matching procedure considers all the type definitions and compares the
corresponding sets of elements that can include simple domains, literals, and
composite types.

There are three kinds of composite types in Actor Prolog, namely: struc-
tures, lists, and so-called underdetermined sets [1]. The structure type definition
consists of a functor and arguments enclosed in round brackets, for example:

AppointedDate = date(Year,Month,Day).

The structural matching procedure checks whether two structure domain de-
finitions contain the same functor and the same number of arguments. Then, the
structural matching of the types of all corresponding arguments is implemented.

The lists are a separate type in Actor Prolog, but not a kind of the structures.
The list type definition contains a name of element type and an asterisk, for
instance:



Towards the Distributed Logic Programming 47

Dates = AppointedDatex*.

The structural matching procedure checks the types of the elements of the
list types.

The definition of an underdetermined set type in Actor Prolog contains an
unordered set of named pairs enclosed in braces. Every pair contains the identifier
of the pair and the type of the argument, for example:

Customer = {name: STRING, birthday: Date, age: INTEGER}.

The structural matching procedure compares the types of all corresponding
pairs in the definitions of undetermined set types. The types must contain the
pairs of the same names, but the order of the pairs is insignificant.

There are two exotic data types in Actor Prolog: so-called anonymous type
“” and so-called “any set” type {_}. The former type indicates that a predicate
accepts terms of any types; it is useful for the definition of read /write procedures,
etc. The second data type is used for the definition of predicates/attributes that
accept terms of any types, but only in a form of an underdetermined set, for
instance:

HTTP_ContentParameters = {_}.

By the rules of the structural matching, the anonymous type matches only
the anonymous type and the “any set” type matches only the “any set” type.

All the rules described above are applicable to both the static and dynamic
type-checking. A single difference relates to the structural matching data types
that contain class names. The point is that a type definition in Actor Prolog can
include the name of a class enclosed in round brackets, for example:

MessageHandler = (‘MyClass’).

This type definition means that a term of the MessageHandler type can
be an instance of the MyClass class. This instance can be a plain world or a
concurrent process of the class. The definition tells nothing about the concurrent
execution of the class instance, but does not prohibit this kind of class usage too.
Actor Prolog considers this world data type as a simple one. The compiler of
non-distributed Actor Prolog guarantees that a term of this type is an instance
of the MyClass class or an instance of a class that inherits the MyClass class;
this rule is softened in the distributed Actor Prolog.

The distributed Actor Prolog checks whether an instance of a class belongs
to the class pointed in the type definition only if this class is defined in the
same logic program (i.e., it is technically possible to check it). An instance of
any external class obtained from another logical agent (program) can be freely
assigned to a variable/predicate argument of any type that includes a class name.
Thus, the structured matching algorithm allows matching of any world types;
the names of classes in the type definitions are simply ignored if the classes are
defined in different logic programs (agents).



48 A.A. Morozov et al.

In distributed Actor Prolog, an instance of a class can be transferred to
another logic program somehow and be accepted without the check of the inter-
face if the accepting program expects to accept an instance of some class. A real
check of the class interface is to be performed when the accepting program try
to invoke a method in the external object. In this case, the structural match-
ing procedure described above is to be performed, that can confirm suitability
of the object or yield a runtime error. Obviously, the implementation of this
check requires information on the origin of all the objects in the logic program.
Thus, distributed Actor Prolog keeps an internal table of all the class instances
created during the program execution and transferred outside. Another inter-
nal table contains all the objects accepted somehow from other logic programs.
These tables allow Actor Prolog to distinguish clearly the instances of own and
external classes and use this information in the structured matching algorithm.

Thus, the multi-agent interaction in Actor Prolog is based on the fusion of
dynamic and static typing. The static type-checking and standard features of
a nominative type system are implemented for all the own worlds like in the
conventional Actor Prolog. At the same time, the dynamic type-checking and
elements of a structural type system are implemented for all the external worlds.
We consider the type system of Actor Prolog as a combined type system. This
type system ensures the advantages of the static type-checking for the high-
performance code generation and the flexibility of the dynamic type-checking
that is necessary for the multi-agent systems programming.

4 An Example of the Logical Agent Communication

Let us consider an example of the remote predicate call. Suppose there are two
agents: Recognizer and Observer (see Fig. 1). These agents should co-operate to
search and recognize people in a video scene. Suppose that Recognizer controls
its own pan-tilt-zoom (PTZ) camera and can identify a person in given co-
ordinates. Observer can analyze behavior of people and calculate co-ordinates
of the persons to be identified. Suppose that these logic programs are different
agents that should establish a link dynamically and exchange information to
solve the problem.

First, let us define a schema of the Recognizer logic program. A logic program
that is defined below creates an instance of a class and saves it in a file to be
accessible for other programs. Other program can read this class instance and
implement a remote call of a predicate defined in the Recognizer program. Let
the external program transmits co-ordinates of a person to be identified and the
Recognizer logic programs accept this information and simply print it in the
screen for the sake of simplicity.

In accordance with the semantics of the Actor Prolog language, the execu-
tion of the program begins with creation of an instance of the Main class. In
the program under consideration, the Main class is an instance of the built-in
Console class that implements a text window control:



Towards the Distributed Logic Programming 49

A remote
predicate call

The Observer agent

An asynchronous
An own predicate call
class instance
An external
class instance

AN

The Recognizer agent

An own
class instance

AN

\

Y

Fig. 1. An example of two co-operating agents. The Recognizer agent publishes an
instance of a class in the external database. Then, the Observer agent obtains this class
instance and sends an asynchronous message to this class instance using Java RMI.

class ‘Main’ (specialized ‘Console’):

external_file = (‘DataExchange’);

[

PREDICATES:

intruder_coordinates(REAL,REAL) - (i,1);
MODEL:

?intruder_coordinates(X,Y).

The Main class contains a single slot named external_file. The value of
this slot is an instance of the DataFExchange class. The DataFExchange class
implements the data exchange using a built-in database for simplicity, since this
is the simplest way of external file control in the Actor Prolog language.

There is a single predicate definition in the PREDICATES section. The
intruder_coordinates predicate has two input real arguments. This predicate
is never called directly inside the Recognizer logic program, that is why one
should indicate in the MODFEL section that this predicate is to be invoked with
two arguments. Otherwise, the translator will discard this predicate during the
optimization of the code.

The CLAUSES section of the Main class contains the definitions of the
goal and intruder_coordinates predicates:

CLAUSES:
goal:-!,
external_file 7 insert(self),
external_file 7 save("g:/SharedData.db"),
writeln("I wait for intruder co-ordinates...").
intruder_coordinates(X,Y):-
writeln("X=",X,"Y=",Y).



50 A.A. Morozov et al.

The goal predicate is called automatically during the creation of the Main
class instance. This predicate inserts the instance of the Main class into the
DataFExchange database using the insert built-in method and the sel f keyword.
Then it records the database content to the file using the sawve built-in method
and writes the message in the screen: “I wait for intruder co-ordinates...” The
intruder_coordinates predicate is to be invoked from outside using the remote
call protocol. This predicate simply writes the co-ordinates in the screen.

There is yet another class definition in the text of the Recognizer program.
The DataFExchange class inherits methods from the Database built-in class
that implements a simple database management system. There is a definition
of the T'arget domain in the DOM AINS section of the DataFExchange class.
This definition is necessary in order to inform the database management system
about the type of data to be stored in the DataExchange class. It is declared
that the T'arget type includes instances of the Main class.

class ‘DataExchange’ (specialized ‘Database’):
L

DOMAINS:

Target = (‘Main’).

]

Let us consider the Observer logic program. Suppose this program should
obtain an instance of an external class from the file and send to this object a
message containing co-ordinates of a person to be identified. The Main class of
this program inherits methods from the Console built-in class too.

class ‘Main’ (specialized ‘Console’):
file = (‘InternalDatabase’);
[
PREDICATES:
send_coordinates(‘AcceptingAgent’) - (i);
CLAUSES:
goal:-
file 7 load("g:/SharedData.db"),
file ? find(ExternalObject),!,
send_coordinates (ExternalObject) .
send_coordinates (ExternalObject) : -
ExternalObject << intruder_coordinates(125.009,1107.144),
writeln("The information is sent...").

The Main class includes the file slot that contains an instance of the
Internal Database class. There is a definition of the send_coordinates auxi-
liary predicate in the PREDICATES section. This predicate has one input
argument that should contain an instance of a class that inherits methods
from the AcceptingAgent interface defined below. The goal predicate acquires
information from the external file using the load built-in method of the
Internal Database database. Then it takes the FxternalObject world from the



Towards the Distributed Logic Programming 51

database and transmits this class instance to the send_coordinates predicate.
The send_coordinates predicate implements an asynchronous predicate call in
the FxternalObject world and writes the text message in the screen: “The infor-
mation is sent...” Note that the asynchronous call will be implemented using
the remote call protocol, because the variable ExternalObject contains an object
that originates from another logic program. The dynamic type-checking will be
implemented during the call.

The AcceptingAgent interface describes methods that are expected to be
supported by the collaborator of the Observer agent. Note that this interface
links up in no way with the classes/interfaces of the Recognizer agent:

interface ‘AcceptingAgent’:

L

PREDICATES:

intruder_coordinates (REAL,REAL) - (i,1);
]

The InternalDatabase auxiliary class is defined in the similar way as the
DataFEzchange class in the Recognizer agent. The single difference is in that
the T'arget domain includes instances of classes that inherit the AcceptingAgent
interface.

class ‘InternalDatabase’ (specialized ‘Database’):
L

DOMAINS:

Target = (‘AcceptingAgent’).

]

Let us execute the Recognizer logic program. The program will create the
SharedData.db file in the g: disk and write the text in the screen:

I wait for intruder co-ordinates...

The SharedData.db file is text one, because the Database class stores the
information in a user-readable format. The file contains something like this (the
text is reduced):

(‘feffiimuyf2uhb8pgbhesx ... rlpll8o2mq9vmyzk207t4’);

The alphanumeric code enclosed in the apostrophes and round brackets is a
usual Actor Prolog term, namely, a text representation of a class instance. On
the technical level, this is an encoded instance of a Java RMI stub that refers
to the class instance. Note that this format of data exchange is appropriate for
any type of data transfer protocols including E-Mails.

Let us launch the Observer agent now. This logic program will read the class
instance from the SharedData.db external file, implement a remote predicate call
in the Recognizer agent, and write the text message:

The information is sent...



52 A.A. Morozov et al.

The Recognizer agent will accept the remote predicate call and write the
acquired co-ordinates in the screen:

I wait for intruder co-ordinates...
X= 125.009 Y=1107.144

This example illustrates the basic schema of agent data exchange in distrib-
uted Actor Prolog using the remote predicate calls, dynamic type-checking, and
some technical details of the data encoding.

5 Conclusions

The extension of the Actor Prolog language with the ability of distributed logic
programming was demonstrated. The idea of a combined type system which
provides a new solution of the problem of the strong typing in the multi-agent
systems was proposed and examined. This type system ensures the advantages
of the static type-checking for the generation of the fast executable code and
the flexibility of the dynamic type-checking that is necessary for the multi-agent
systems design. It was implemented in the distributed version of the Actor Prolog
language that gives new means for experimenting with the multi-agent logic
programming. We suppose that these means open new prospects for the deve-
lopment of real time logical multi-agent systems and practical applications of
the logic programming in the intelligent visual surveillance.

This research is supported by the Russian Foundation for Basic Research,
grant No. 16-29-09626 (please see our Web Site [23] for details).

References

1. Morozov, A.A.: Actor Prolog: an object-oriented language with the classical declar-
ative semantics. In: Sagonas, K., Tarau, P. (eds.) IDL 1999, France, Paris, pp. 39-53
(1999)

2. Morozov, A.A.: Logic object-oriented model of asynchronous concurrent computa-
tions. Pattern Recogn. Image Anal. 13, 640-649 (2003)

3. Russell, S., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice-Hall,
London (1995)

4. Shen, W., Hao, Q., Yoon, H., Norrie, D.: Applications of agent-based systems
in intelligent manufacturing: an updated review. Adv. Eng. Inform. 20, 415-431
(2006)

5. Baldoni, M., Baroglio, C., Mascardi, V., Omicini, A., Torroni, P.: Agents, multi-
agent systems and declarative programming: what, when, where, why, who, how?
In: Dovier, A., Pontelli, E. (eds.) A 25-Year Perspective on Logic Program-
ming. LNCS, vol. 6125, pp. 204-230. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14309-0_10

6. Gascuena, J., Fernandez-Caballero, A.: On the use of agent technology in intelli-
gent, multisensory and distributed surveillance. Knowl. Eng. Rev. 26(2), 191-208
(2011)


https://dx.doi.org/10.1007/978-3-642-14309-0_10
https://dx.doi.org/10.1007/978-3-642-14309-0_10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

Towards the Distributed Logic Programming 53

Badica, C., Braubach, L., Paschke, A.: Rule-based distributed and agent systems.
In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011. LNCS, vol.
6826, pp. 3—28. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22546-8_3
Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul.
18, 191-208 (2015). http://jasss.soc.surrey.ac.uk/18/1/11.html

Vallejo, D., Albusac, J., Castro-Schez, J., Glez-Morcillo, C., Jiménez, L.: A multi-
agent architecture for supporting distributed normality-based intelligent surveil-
lance. Eng. Appl. Artif. Intell. 24, 325-340 (2011)

Ejaz, N., Manzoor, U., Nefti, S., Baik, S.: A collaborative multi-agent framework for
abnormal activity detection in crowded areas. Int. J. Innov. Comput. Inf. Control
8, 4219-4234 (2012)

Morozov, A.A., Sushkova, O.S., Polupanov, A.F.: A translator of Actor Prolog to
Java. In: Bassiliades, N., Fodor, P., Giurca, A., Gottlob, G., Kliegr, T., Nalepa,
G., Palmirani, M., Paschke, A., Proctor, M., Roman, D., Sadri, F., Stojanovic, N.
(eds.) RuleML 2015 DC and Challenge, Berlin, CEUR (2015)

Morozov, A.A., Vaish, A., Polupanov, A.F., Antciperov, V.E., Lychkov, L.I., Alfimt-
sev, A.N., Deviatkov, V.V.: Development of concurrent object-oriented logic pro-
gramming platform for the intelligent monitoring of anomalous human activities.
In: Plantier, G., Schultz, T., Fred, A., Gamboa, H. (eds.) BIOSTEC 2014. CCIS,
vol. 511, pp. 82-97. Springer, Cham (2015). doi:10.1007/978-3-319-26129-4_6
Morozov, A.A., Polupanov, A.F.: Intelligent visual surveillance logic programming:
implementation issues. In: Stréder, T., Swift, T. (eds.) CICLOPS-WLPE 2014.
Number AIB-2014-09 in Aachener Informatik Berichte, RWTH Aachen University,
pp. 31-45 (2014)

Morozov, A.A., Polupanov, A.F.: Development of the logic programming app-
roach to the intelligent monitoring of anomalous human behaviour. In: Paulus,
D., Fuchs, C., Droege, D. (eds.) OGRW 2014, pp. 82-85. University of Koblenz-
Landau, Koblenz (2015)

Morozov, A.A., Sushkova, O.S., Polupanov, A.F.: An approach to the intelligent
monitoring of anomalous human behaviour based on the Actor Prolog object-
oriented logic language. In: Bassiliades, N., Fodor, P., Giurca, A., Gottlob, G.,
Kliegr, T., Nalepa, G., Palmirani, M., Paschke, A., Proctor, M., Roman, D., Sadri,
F., Stojanovic, N. (eds.) RuleML 2015 DC and Challenge, Berlin, CEUR, (2015)
Morozov, A.A.: Development of a method for intelligent video monitoring of abnor-
mal behavior of people based on parallel object-oriented logic programming. Pat-
tern Recogn. Image Anal. 25, 481-492 (2015)

Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason. Wiley Series in Agent Technology, 8th edn. Wiley,
Chichester (2007)

Dastani, M.: 2APL: a practical agent programming language. Auton. Agent. Multi-
Agent Syst. 16, 214-248 (2008)

Odell, J.: Objects and agents compared. J. Object Technol. 1, 41-53 (2002)
Nierstrasz, O., Dami, L.: Component-oriented software technology. In: Nierstrasz,
O., Tsichritzis, D. (eds.) Object-Oriented Software Composition, pp. 3-28. Prentice
Hall, Upper Saddle River (1995)

Davison, A.: A survey of logic programming-based object oriented languages. Tech-
nical report 92/3, Department of Computer Science, University of Melbourne, Mel-
bourne, Australia (1992)

Borland International: Turbo Prolog Owner’s Handbook (1986)

Morozov, A.A., Sushkova, O.S.: The intelligent visual surveillance logic program-
ming Web Site (2016). http://www.fullvision.ru/actor_prolog/


https://dx.doi.org/10.1007/978-3-642-22546-8_3
https://jasss.soc.surrey.ac.uk/18/1/11.html
https://dx.doi.org/10.1007/978-3-319-26129-4_6
https://www.fullvision.ru/actor_prolog/

	Towards the Distributed Logic Programming of Intelligent Visual Surveillance Applications
	1 Introduction
	2 The Problem of the Strong Typing in Multi-agent Systems
	3 A Strong Type System in the Distributed Actor Prolog
	4 An Example of the Logical Agent Communication
	5 Conclusions
	References


